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Abstract

Many traditional algorithms for computing the fast Fourier transform (FFT) on con-

ventional computers are unacceptable for advanced vector and parallel computers because

they involve nonunit, power-of-two memory strides. This paper presents a practical tech-

nique for computing the fast Fourier transform that completely avoids all such strides and

appears to be near-optimal for a variety of current vector and parallel computers. Perfor-

mance results of a program based on this technique are presented. Notable among these

results is that a Fortran implementation of this algorithm on the Cray-2 runs up to 77%
faster than Cray's assembly-coded library routine.

The author is with the Numerical Aerodynamic Simulation (NAS) Systems Division at

NASA Ames Research Center, Moffett Field, CA 94035.



Introduction

As a result of the proliferation of advanced vector and parallel scientific computers,

many traditionaLly used numeric computation algorithms are being reconsidered. Issues

that previously were very important, such as conserving memory, are no longer significant,

and other issues have come to the fore. One issue that is increasingly important for a wide

range of new systems is memory access patterns, especially the memory stride (i.e., the

increment in memory between successive elements in a vector fetch or store operation).

For a highly parallel, distributed memory system such as a hypercube, data locality is a

very important issue. Even though such systems are designed for efficient communication

of data between processors, it is still highly advantageous to be able to perform as much

computation as possible locally within one processor-memory node. This means that unit

stride memory accesses are optimal -- larger strides increase the frequency that data must

be accessed that resides on other processors. Uniprocessor systems with cached memories,

such as the Convex C1 and the IBM 3090 VF, have a similar problem. On these systems,

large strides increase the frequency of cache hits, which result in significantly decreased

performance. Again, the optimal stride for memory accesses is one.

In vector supercomputers with large interleaved shared memories (such as Crays), large

strides are not disadvantageous per se, but strides divisible by large powers of two result

in extremely serious performance reductions due to memory bank conflicts. Because of the

interleaved design of the memory banks, a vector fetch or store with unit stride operates

at full speed, since each word resides on a different bank. However, vector fetches or stores

with strides divisible by large powers of two suffer serious slowdowns, since each word

resides on the same bank. On the Cray-2, strides divisible by 256 can result in slowdowns

of more than a factor of 40.

In other systems, such as the CDC Cyber 205 and the recently introduced ETA-10,

most hardware instructions are designed for unit stride memory access. Access of data

with strides other than one requires the usage of gather-scatter instructions and as a result

does not fully tap the potential performance of the machine.

This paper describes a technique for evaluating one-dimensional power-of-two FFT that

completely avoids power-of-two memory strides. In addition, this algorithm features the

following:

• All fetches and stores of the main data arrays in the inner loop are performed with

unit stride.

• In the first few iterations, roots of unity are fetched in inner loops, but these fetches

have unit stride.

• After the first few iterations, all roots of unity are fetched in the outer loop.

• The minimum length of inner loops can be adjusted to be at least the natural vector

length for the machine being used, or up to the square root of the size of the transform.



• A power-of-two matrix transposition is required after the first few iterations, but this

step can be performed without any power-of-two memory strides.

• An ordered transform is produced; no bit-reversal permutation is necessary.

Strides in FFT Algorithms

Unfortunately, by far the most popular FFT is the power-of-two FFT, and virtually

all machine implementations of this FFT require numerous memory accesses with large

power-of-two memory strides. For example, a commonly used algorithm for evaluating

power-of-two FFTs is the following, which is known as the standard Stockham formulation

of the FFT. Let n = 2 '_, and let at = e+_'_i/p, where p = 2 t. Then iterate the following

calculations for t from 1 to m:

r(j2' + =
r(j2' + 2'-1 + k) =

0<3 <2 m-t

X(j2 t-1 + k) + ctktX(j2 t-1 + n/2 + k)

x(j2 + k) - . x(j2 + + k)
0<k<2 t-1

In the above formulas, X is the input array and Y is the output array for each iteration, and

these formulas imply that data be copied from Y to X before the next iteration. However,

in practice iterations are performed from X to Y and then from Y to X so that copying is

not necessary. Actually, in older implementations of FFTs, memory space is usually saved

by overwriting the results into the same array, rather than using a separate array for the

results on the left-hand side. If this is done, the resulting data will not be stored in the

proper locations, and a "bit-reversal" permutation of the final results will be necessary.

Many implementations of the FFT also precalculate the powers of a in a one-time

initialization before the FFT is called with any data. Typically these powers are placed

in an array U such that U(k) = ct,_,k 0 _< k < n/2. Then the expression atk is evaluated

by merely recalling U(k2 m-t) from memory. The most common procedure to perform one

iteration of the FFT above is to increment j in the inner loop and to increment k in the

outer loop. For many computers this ordering of the loops is faster because the fetch of

the power of a from U may be done in the outer loop, since it does not depend on j.

On most new systems, however, each of the above-mentioned techniques for evaluating

the FFT is inappropriate. Saving memory by not using a scratch array, at the cost of

a bit-reversal permutation, is ridiculous on systems such as the Cray-2, which has over

268 million 64-bit words of main memory. Likewise, evaluating the above formulas with

j incremented in the inner loop is extremely unwise on many new vector and parallel

computers, because virtually all accesses of the X and Y arrays will employ large power-

of-two memory strides, especially in the later iterations. And even the practice of fetching

powers of at as described above results in power-of-two memory strides.



Previous Solutions to the Power-of-Two Stride Problem

A number of solutions have been proposed to the problem of power-of-two memory

strides in FFTs. One solution is to simply avoid using power-of-two FFTs, in favor of

radix-3 or radix-5 FFTs. Unfortunately, most applications of the FFT are not easily

converted to using mixed radix FFTs. In some cases, the usage of a power-of-two FFT is

inherent in the nature of the application and cannot be changed at any cost. And even

where it is possible to convert an application to use mixed-radix FFTs, the programming

cost of such a conversion is often prohibitive. Hockney and Jesshope [3] suggest using

spacers in data to avoid power-of-two strides, but again this is not a practical solution to

the problem for most applications.

Many applications of the FFT require two-dimensional or three-dimensional FFTs.

Such FFTs can easily be performed with stride one memory accesses by merely coding a

one-dimensional algorithm to operate on a vector of data simultaneously. Unfortunately,

not all applications can utilize simultaneous FFT computations, and even where it is

possible it is often not convenient to do so.

Some FFT algorithms, notably the Pease algorithm [4], permit stride one, long vector

computation for virtually all operations. Fornberg [2] has reported success in implementing

this technique on the CDC 205, for instance. Unfortunately, the Pease algorithm requires

a bit-reversal permutation to be performed on the output data, and most vector computers

are not efficient performing this permutation.

In a previous paper by the author [1], a technique was presented that avoids the power-

of-two memory strides inherent in the Stockham FFT. The first "trick" is to perform the

Stockham iterations incrementing k in the inner loop instead of j. In this way, the data

arrays X and Y may be accessed with unit stride (provided that complex data is stored

with real and imaginary parts separated instead of interleaved, as is the usual custom).

The second idea mentioned in [1] is to store the powers of st that are needed for a single

iteration as contiguous data in a separate section of the array U. In this way, the fetch

of roots of unity from U always has stride one. The memory storage required for storing

all roots of unity in this manner is only twice the usual amount, and using some extra

memory in this fashion to increase performance is in fact an efficient usage of a large

memory machine.

Unfortunately, in practice it is not efficient to perform all iterations with k incremented

in the inner loop. This is because for the first few iterations the inner loop vector lengths

are very short, which sharply reduces performance on any vector machine. Thus, in the

implementation described in [1], it is necessary to perform the first few iterations with j

incremented in the inner loop, which results in some power-of-two memory strides.

A technique reported in [1] that significantly improves the performance of the Cray-2

implementation is the usage of radix-4 versions of the above Stockham formulas. Using

radix-4 FFT formulas in effect allows two radix-2 iterations to be performed within the

fast CPU registers before results must be stored back to the main memory. This technique

thus lessens the dependence of the algorithm on the relatively slow Cray-2 main memory,



and a significant improvement in performance is obtained. The resulting Fortran program

is as much as 30% faster than Cray's assembly-coded library routine on the Cray-2.

A New Technique for Performing Power-of-Two FFTs

In [4] and [5] Swarztrauber surveys the best algorithms currently available for per-

forming FFTs on parallel and vector computers. Included in [5] are two variations of the

Stockham FFT, each different than the algorithm listed above. These variant FFTs each

have the property that all inner loop calculations can be performed with stride one accesses

of the main data arrays. It is necessary, however, to switch from one variant to the other

to avoid very short inner loop vector lengths, and this switch from one variant to the other

requires a transposition permutation.
The formulas for Swarztrauber's variations of the Stockham FFT are as follows. Let

n = 21m. It may be assumed that the factors l and m are powers of two if desired, but the

formulas are valid for any factorization. In the usual power-of-two case, I is initially set to

be n/2 and decreases by a factor of two with each iteration. Similarly, m is initially set to

be 1 and increases by a factor of two with each iteration. As before, X denotes the input

data and Y denotes the output data for each iteration, but in an efficient implementation,

the iterations are performed from X to Y and from Y to X. In the following, wp denotes

e + 2_ri / P .

Radix-2 Variant 1

co = x(j + 2kl)

ct = X(j + 2kl + l)

Y(j + kl) = co+el

r(j + kz+ ira) = ,,4,(co -
O<j<l O<k<m

Radix-2 Variant 2

co = X(k + jm)

cl = X(k+jm+lm)

Y(k + 2jm) = Co+C1

Y(k + 2jm + m) = w_t(Co-Cl)

O<j<l O<k<m

These formulas suggest that in the inner computational loops, j should be incremented

in Variant 1, and k should be incremented in Variant 2. In this manner, all fetches and

stores of data in the X and Y arrays are with unit stride. The manner in which roots of

unity are fetched is not an issue in Variant 2, since this may be done in the outer loop.

In Variant 1, on the other hand, roots of unity must be fetched in the inner loop, and
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these fetches ordinarily have power-of-two memory strides. Such strides can be avoided,

however, by employing the technique mentioned above of precalculating the roots of unity

needed for each iteration in a separate, contiguous section of the U array. Once this is

done, all iterations of a power-of-two FFT using the above formulas may be performed

using exclusively unit stride memory accesses.

The choice of the crossover point between the two variants depends on the computer

system being used. Normally only the first few iterations are performed using Variant 1,

because roots of unity must be fetched in the inner loop. Once the value of rn is sufficiently

large that the harmful effect of very short vector lengths is avoided, then Variant 2 is used

for all succeeding iterations.

As mentioned above, the switch between the two variants requires that the data (consid-

ered as a 21 × m matrix) be transposed. Unfortunately, the usual method for performing a

matrix transposition with power-of-two dimensions involves numerous power-of-two mem-

ory strides. While it is not possible to transpose such a matrix with exclusively unit stride

operations, the memory bank conflicts that occur on most vector computer systems can

be avoided as follows. Assume for simplicity that n = lrn and l >_ m. Then set p = l + 1

and q = m + 1. Then the data array X may be transposed as follows:

Y(iq+j) = X(ip+lj)

Y(iq + mj) = X(ip + j)

Y(iq + mj) = X(ip + j)

O<i<m-j, O<_j <m

O<i<m, l <_j<l-rn

O<_i<l-j, l-m<j<l

These formulas in effect perform a matrix transposition along diagonals. In this manner,

all memory accesses are with constant strides that are one larger than a power of two.

On many systems, including Cray X-MP and Cray-2 systems, memory accesses with such

strides are performed virtually as fast as with stride one. On other systems, such as the

CDC 205, any nonunit stride will result in reduced performance, but the reduction will be

greatly moderated by the absence of bank conflicts.

Radix-4 Formulas

In the author's previous paper [1], it was found that radix-4 formulas resulted in a

significant improvement in the performance on the Cray-2. This is due to the fact, as was

mentioned above, that radix-4 iterations perform the work of two radix-2 iterations with

only one access of the data arrays in main memory. The same principle applies to the

algorithm described in this paper. The corresponding radix-4 formulas are as follows:

Radix-4 Variant 1

Co = x(j + 4kt)
ca = X(j + 4kl + l)

c_ = X(j + 4kl + 20

cs = X(j +4kl+3/)



d o = c o q- c 2

dl = Co - c2

d2 _ cl + c3

d3 : -+-i(Cl - c3)

Y(j+kl) = do+d2

Y(j + kl + lm) = w_l(d_ + d3)

= w4_(do-d2)Y(j + kl + 2lm) 2j

= ' 41(dl - d3)Y(j + kl + 31m) 3j

O<j<l O<k<m

Radix-4 Variant 2

Co = X(k + jm)

cl = X(k + jm + lm)

c2 = X(k + jm + 21m)

c3 = X ( k + jm + 31m )

do = Co + c2

dl = co - c2

d2 = Cl "4- C3

d 3 = -4-i(c 1 - c3)

Y(k + 4jm) = do + dz

r(k + 4jm + m) = w_t(dl + d3)

: ¢.t_4| (do -- d2)Y(k + 4jm + 2rn) 2j

= (dl - d3)Y(k + 4jm + 3m) 3j

O<j<l O<k<m

It should be noted that in practice, both the radix-4 and radix-2 formulas must be used,

in order that transforms of both even and odd power-of-two sizes may be processed.

Performance Results

The above technique has been implemented in a Fortran program and run on a number

of advanced vector computers. In each case, excellent performance results have been ob-

tained. On the CDC 205, a rate of 105 million 64-bit floating-point operations per second

(MFLOPS) was obtained on a transform of size 217. On the Convex C1P, a rate of 7.9

MFLOPS was obtained on a transform of size 2 is using the radix-2 version.

The results on the Cray-2, which is very sensitive to power-of-two memory strides, are

particularly encouraging. Table 1 compares CFFTZ, which is a Fortran program based



m

8 0.00023

9 0.00048

i0 0.00099

II 0.00204

12 0.00420

13 0.00868

14 0.01871

15 0.03987

16 0.07719

17 0.16113

18 0.32692

19 0.67228

20 1.39522

CFFT2 CFFTZ

CPU Time Error CPU Time Error MFLOPS

5.111xi0 -15

5.658x 10-15

6.784xi0 -15

1.102xlO -14

1.252x 10-14

3.510x 10-14

5.445x 10-14

2.095x I0-Iz

2.518x 10-t3

6.416x 10-13

9.999x 10-13

7.362x 10-13

4.498x 10-13

0.00027

0.00045

0.00074

0.00148

0.00274

0.00538

0.01055

0.02427

0.04724

0.09524

0.19488

0.43286

0.89189

6.078x 10-15

6.130xi0 -15

6.913× 10-15

7.052x 10-15

7.608x 10-15

7.865x I0-Is

8.430x 10-15

8.555x 10-15

9.092×I0 -Is

9.248×10 -15

9.758× 10-15

9.847x I0-Is

1.035x 10-14

37.92

51.00

69.60

76.33

89.62

98.99

108.70

I01.28

110.99

116.98

121.07

115.06

i 117.57

Table 1:Cray-2 Performance Figures

Time' Error

Ratio Ratio

0.846 0.8410

1.061!0.9229
1.347 0.9813

1.380 1.562

1.531 1.646

1.614 4.462

1.773 6.459

1.643 24.49

1.634 27.69

1.6921 69.38
{

1.678 102.5

1.553 I 74.76
1.564 _ 43.47

on the radix-4 technique described in this paper, to CFFT2, which is the assembly-coded

library routine provided by Cray Research, Inc. The size of the transform is 2 m, where m

is given in the first column. The column headed MFLOPS gives the performance of the

program CFFTZ, based on the formula 5m2" for the number of floating-point operations

for a transform of size 2". The error statistics listed in this table are the root-mean-square

(RMS) error after performing a forward and an inverse FFT on pseudorandom data. These

runs were made on one processor of the Cray-2 system with a normal background of jobs

running on the other three processors.

Conclusions

An implementation of Swarztrauber's variations of the Stockhaxn FFT algorithm, com-

bined with special techniques for eliminating power-of-two memory strides in the access of

roots of unity aJad in performing a matrix transposition, has resulted in a high-performance

one-dimensional power-of-two FFT suitable for many vector computers. A Fortran radix-4

implementation of this method runs as much as 77% faster than Cray's assembly-coded

library routine on the Cray-2. A side benefit of this program is that its numeric precision

is superior to Cray's library routine. The reason for the improved precision is not known.

While the author's implementation has focused on single processor vector computers,

the unit stride feature of the above algorithm is highly appropriate for parallel systems.

Indeed, Swarztrauber's paper [6] emphasizes the application of his technique to hypercubes

and other multiprocessor systems. It thus appears that this basic technique is well suited
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for a variety of advanced systems.
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